50000 تومان
افزودن به سبد خرید
0 فروش 842 بازدید
جزئیات محصول
تعداد قسمت: 1
پسوند فایل: zip
حجم فایل: 1MB
فایل راهنما: دارد
فریم ورک: MATLAB
بسته نصبی: ندارد
امکانات: صورت مساله، گزارش ورد (4 صفحه ) و کد متلب (ام فایل)
تاریخ انتشار: 15 ژانویه 2019
دسته بندی: ,,

تبلیغات

حل معادله سیستم جرم و فنر و دمپر یک درجه آزادی با اعمال نیروی سینوسی

شبیه سازی یک سیستم مکانیکی با چندین جرم و فنر – دمپر در متلب

یک سیستم یک درجه ازادی جرم و فنر و دمپر تعریف شده است و  پاسخ اجباری تحت اعمال یک نیروی سینوسی ذوزنقه ای (منظور این است که  نیرو بصورت تابع چند ضابطه ای ذوزنقه سینوسی است که تابع ان در ضمیمه و شکل نیرو موجود است) محاسبه می شود.

یک سیستم ارتعاشی شامل بخش‌های مختلفی می‌شود. این اجزا، با چهار مولفه اصلی نیرو، جابجایی، سرعت و شتاب در ارتباط هستند. با به‌کارگیریِ سیستم جرم و فنر، ارتباط بین نیرو و جابجایی مدل‌سازی می‌شود. البته توجه داشته باشید که در حالت کلی می‌توان با استفاده از قانون دوم نیوتن یا معادله اویلر لاگرانژ، معادلات توصیف کننده سیستم‌های دینامیکی را بدست آورد. در یک فنر خطی، نیروی FS با ازدیاد طول آن و به صورت خطی تغییر می‌کند.

فنرها همچون مقاومت‌های الکتریکی، در یک سیستم ارتعاشی می‌توانند به صورت موازی و یا متوالی مورد استفاده قرار گیرند. هم‌چنین هر سیستم ارتعاشیِ الاستیک را می‌توان به صورت یک فنر در نظر گرفت. با این فرض، می‌توان عددی تحت عنوان ثابت معادل فنر (Keq) را به سیستم ارتعاشی مذکور اختصاص داد.

اکثر سیستم‌های مکانیکی را می‌توان با تقریب بسیار خوبی با سیستم جرم-فنر-دمپر، مدل‌سازی کرد. مطابق با شکل زیر نیروهای وارد شده به جرم، در چنین سیستمی را می‌توان با استفاده از قانون دوم نیوتن،نشان داد. رابطه مذکور، یک معادله دیفرانسیل مرتبه دوم است. همان‌طور که در مطالب گذشته نیز اشاره کردیم، چنین معادلاتی را می‌توان با استفاده از روش ترکیب خطی پاسخ خصوصی و عمومی محاسبه کرد. شرایط اولیه این معادله را می‌توان به صورت x0 و ۰‘x در نظر گرفت. این مقادیر به ترتیب جابجایی و سرعت در زمان صفر هستند. به منظور حل این معادله در ابتدا فرض کنید که با سیستمی سروکار داریم که نیروی خارجی و دمپر در آن وجود ندارد. بنابراین در معادله ذکر شده در بالا عبارات (F(t و c، صفر هستند. در نتیجه این معادله به صورت زیر خواهد بود.

صورت مساله : تابع نیرو و معادله سیستم  (مطابق تصویر)

 

افزودن به سبد خرید

لطفاً براي ارسال دیدگاه، ابتدا وارد حساب كاربري خود بشويد

محصولات پر فروش

پر فروش ترین محصولات فروشگاه روکساوب